Mitochondrial phospholipids of rat skeletal muscle are less polyunsaturated than whole tissue phospholipids: implications for protection against oxidative stress.
نویسندگان
چکیده
The fatty acid composition of phospholipids is an important determinant of membrane function. Although the mitochondria play a pivotal role in skeletal muscle function, the fatty acid composition of their individual phospholipids has not been examined. The purpose of this study was to determine the fatty acid profile of each phospholipid in rat skeletal muscle mitochondria and compare it with that of the whole muscle. Lipids were extracted from the gastrocnemius muscles of 10 Wistar rats, and phospholipids were separated by thin-layer chromatography. The fatty acid composition of each phospholipid was then determined by gas chromatography. The same procedure was applied to a mitochondrial preparation from these muscles. We found that the fatty acid composition of the individual mitochondrial phospholipids (phosphatidyl choline, phosphatidyl ethanolamine, cardiolipin, phosphatidyl inositol, phosphatidyl serine, sphingomyelin, and lysophosphatidyl choline) and of the total mitochondrial phospholipids differed markedly (P < 0.05) from the fatty acid composition of the corresponding whole muscle phospholipids. Notably, the mitochondrial phospholipids had higher percentages of MUFA [13.9 (2.1) vs. 10.3 (0.9)] and lower percentages of PUFA [34.8 (4.3) vs. 39.5 (5.2)] and n6 fatty acids [25.0 (2.5) vs. 27.6 (2.5)]. Overall, the mitochondrial phospholipids had a lower unsaturation index than whole muscle phospholipids [135 (20) vs. 161 (26)]. Because PUFA are susceptible to peroxidation, unlike saturated fatty acids and MUFA, we propose that the low polyunsaturation of mitochondrial phospholipids is the result of selective pressure toward membranes that are more resistant to oxidative damage by reactive oxygen species produced in their vicinity. The negative effect of the low polyunsaturation on membrane fluidity may be counterbalanced by the higher percentage of MUFA and the known low cholesterol content of mitochondrial membranes.
منابع مشابه
Oxidation-resistant membrane phospholipids can explain longevity differences among the longest-living rodents and similarly-sized mice.
Underlying causes of species differences in maximum life span (MLS) are unknown, although differential vulnerability of membrane phospholipids to peroxidation is implicated. Membrane composition and longevity correlate with body size; membranes of longer-living, larger mammals have less polyunsaturated fatty acid (PUFA). We determined membrane phospholipid composition of naked mole-rats (MLS > ...
متن کاملEvolution of mammalian endothermic metabolism: mitochondrial activity and cell composition.
Body composition was measured and compared in Amphibolurus vitticeps and Rattus norvegicus (a reptile and a mammal with the same weight and body temperature). Homogenates were prepared from liver, kidney, brain, heart, lung, and skeletal (gastrocnemius) muscle, and mitochondria were isolated. Cytochrome oxidase activities of both tissue homogenates and isolated mitochondria were measured (at 37...
متن کاملInter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes.
It is unknown whether Antarctic fishes can defend themselves against oxidative stress induced by elevations in temperature. We hypothesized that Antarctic icefishes, lacking the oxygen-binding protein hemoglobin, might be more vulnerable to temperature-induced oxidative stress compared with red-blooded notothenioids because of differences in their mitochondrial properties. Mitochondria from ice...
متن کاملComparison of the phospholipid and triacylglycerol fatty acid profile of rat serum, skeletal muscle and heart.
Although several studies have analyzed the fatty acid profile of phospholipids (PL) and, to a lesser degree, triacylglycerols (TG) in one or more tissues concurrently, a systematic comparison of the fatty acid composition of different tissues and/or lipid classes is lacking. The purpose of the present study was to compare the fatty acid composition of major lipid classes (PL and TG) in the rat ...
متن کاملEffect of L-Carnitine on Skeletal Muscle Lipids and Oxidative Stress in Rats Fed High-Fructose Diet
There is evidence that high-fructose diet induces insulin resistance, alterations in lipid metabolism, and oxidative stress in rat tissues. The purpose of this study was to evaluate the effect of L-carnitine (CAR) on lipid accumulation and peroxidative damage in skeletal muscle of rats fed high-fructose diet. Fructose-fed animals (60 g/100 g diet) displayed decreased glucose/insulin (G/I) ratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 84 10 شماره
صفحات -
تاریخ انتشار 2006